| Question 1:                                    | Battery manufacturing problem.                                |  |  |
|------------------------------------------------|---------------------------------------------------------------|--|--|
| Optimal expected total return = $4.8$          |                                                               |  |  |
| Optimal policy:                                |                                                               |  |  |
|                                                | Carry out the research                                        |  |  |
|                                                | If it is completely successful, manufacture the battery       |  |  |
|                                                | If it is partially successful, do not manufacture the battery |  |  |
|                                                |                                                               |  |  |
| Question 2:                                    | Wage negotiation problem.                                     |  |  |
| Minimum expected total cost = 10.62            |                                                               |  |  |
| Optimal policy:<br>Make an intermediate offer  |                                                               |  |  |
| Make an intermediate offer                     |                                                               |  |  |
|                                                |                                                               |  |  |
| Question 3:                                    | Car manufacturing problem.                                    |  |  |
| (a)                                            | Optimal policy: 28.4                                          |  |  |
|                                                | Choose high capacity                                          |  |  |
|                                                |                                                               |  |  |
| (b)                                            | Optimal expected total return = 28.4                          |  |  |
|                                                | Optimal policy:                                               |  |  |
|                                                | Do not undertake the survey                                   |  |  |
|                                                |                                                               |  |  |
| Question 4:                                    | Pile ordering problem.                                        |  |  |
| (a)                                            | Optimal expected loss = $\pounds 1100$                        |  |  |
| Optimal policy:                                |                                                               |  |  |
| Order 12m piles for both north and south piers |                                                               |  |  |
| (b)                                            | Optimal expected loss = $f920$                                |  |  |
| (0)                                            | Optimal policy:                                               |  |  |
|                                                | Order 50 piles @ 11m and 50 piles @ 12m                       |  |  |
|                                                |                                                               |  |  |
| Question 5:                                    | Plant extension problem.                                      |  |  |
| (a)                                            | Optimal expected annual profit increase $=$ 1.493             |  |  |
|                                                | Optimal policy:                                               |  |  |
|                                                | Order now & choose capacity 13                                |  |  |
| ( <b>b</b> )                                   | Maximum apparted utility $= 0.8$ (f1 4m)                      |  |  |
| (0)                                            | Optimal policy: $(z1.411)$                                    |  |  |
|                                                | Observe $d_1$ . If $d_1 = 10$ , choose capacity 12            |  |  |
|                                                | If $d_1 = 11$ , choose capacity 13                            |  |  |
|                                                |                                                               |  |  |

BATTERY MANUFACTURING PROBLEM



· Numerical Solution i Completely successful & manufacture the battery EMV = 0.8 × 40 + 0.2 × (-80) = 16 11. Partially successful & manufacture the battery  $EMV = 0.3 \times 40 + 0.7 \times (-80) = -44$ III. Do research  $EMV = 0.8 \times 16 + 0.2 \times (-40) = 4.8$  Answer 1. Maximum Expected Return: 4.8 II. Optimal Policy If it is completely successful, manufacture the battery Carry out the research? If it is partially successful do not manufacture the botter

TE([.2

ACTION: K=1 high offer, K=2 Intermediate offer, K=3 low offer, K=4 very high offer Kerry i Minimum Expected Cost: 10-62; il Optimal policy; make an intermediate offer. 26.4 D.6 K=4 Very -(12+14)=-27 -24.2 Strike -26.2 Strike High - (10+15) =-25 WHEE NEGOTIATION PROE-EM 0=2 Reject 0=2 Reject 0=2 reject offer -26.20 21 & K= 1 -16.1 K=2 Int offer (16.1 -13.24 K=1, High offer -26.2 Strike oil accept offer, 10=2 Reject 14:4) 0=2 Reject 0=2 Reject · Problem Formulation (F).04 OUTCOME; · Answer -19.91

CAR MANUFACTURING PROBLEM

(a) Problem Formulation K=1 choose high capacity K=2 choose medium capacity ACTION: K= 3 choose low capacity OUTCOME: 0=1 high demand 0=2 low demand

Expected value: maximum expected return



·Answer.

1. Choose high capacity ii. Optimal expected Return = 28.4 (b) Problem Formulation ACTION: a, undertake survey => K=1, 2, 3 az don't undertake survey => K=1, 2, 3

OUTCOME: Z, forecast 1 => 0=1,2  $Z_2$  forecast 2  $\Rightarrow 0=1,2$ p(0,/z,) 39 0=1 0=2 p(02/21) 10 K=1 p(0, 3) - 29 K=2 2=2 P(Q Z)19 P(3,1)  $p(0, \overline{z})$ - 15 2=2 P(02/Z1) 23 p(0, 32) 39 P(Z2) 0=2 PO2/23)10 p(0, 22) Kel K=2 == P(02/22) 19 <= 3 az P[0, ] Z3) 15 2=2 P(02/22)23 - 30 0=1 28.0 5=3 516 0=2

\_25

 $N(0_1, z_1) = q$ ,  $N(0_2, z_1) = 3$ ,  $N(0_1, z_2) = b$ ,  $N(0_2, z_2) = 7$ 

- $$\begin{split} P(Z_1) &= \frac{N(Z_1)}{N} = \frac{12}{25} = 0.48, \quad P(Z_2) = \frac{N(Z_2)}{N} = \frac{13}{25} = 0.52\\ P(0_1/Z_1) &= \frac{N(0_1, Z_1)}{N(Z_1)} = \frac{9}{12} = 0.75, \quad P(0_2/Z_1) = \frac{N(0_2, Z_1)}{N(Z_1)} = \frac{3}{12} = 0.25\\ P(0_1/Z_2) &= \frac{N(0_1, Z_2)}{N(Z_2)} = \frac{5}{13} = 0.46, \quad P(0_2/Z_2) = \frac{N(0_2, Z_2)}{N(Z_2)} = \frac{7}{13} = 0.54 \end{split}$$
- <u>Approach 2:</u>  $p(Q_1, Z_1) = \frac{N(Q_1, Z_1)}{N} = \frac{9}{25} = 0.36, \quad p(Q_2, Z_1) = \frac{N(Q_2, Z_1)}{N} = \frac{3}{25} = 0.12$  $P(Z_1) = p(Q_1, Z_1) + p(Q_2, Z_1) = 0.36 + 0.12 = 0.48$

 $P(o_1, \vec{z}_2) = \frac{N(o_1, \vec{z}_2)}{N} = \frac{b}{25} = 0.24, \quad P(o_2, \vec{z}_2) = \frac{N(o_3, \vec{z}_2)}{N} = \frac{7}{25} = 0.28$ 

 $P(Z_2) = p(Q_1, Z_2) + p(Q_2, Z_2) = 0.24 + 0.28 = 0.52$ 

$$\frac{P(0_1/\overline{z}_1) = \frac{P(0_1, \overline{z}_1)}{P(\overline{z}_1)} = \frac{0.36}{0.48} = 0.75}{P(0_2/\overline{z}_1) = \frac{P(0_2, \overline{z}_1)}{P(\overline{z}_1)} = \frac{0.12}{0.48} = 0.25}$$

$$\frac{P(0_1/\overline{z}_2) = \frac{P(0_1, \overline{z}_2)}{P(\overline{z}_2)} = \frac{0.24}{0.52} = 0.46}{P(0_2/\overline{z}_2) = \frac{P(0_2, \overline{z}_2)}{P(\overline{z}_2)} = \frac{0.28}{0.52} = 0.54$$

· Numerical Solution



TF13.4

PILE ORDERING PROBLEM



(b) Results using Table I ACTION: K=1 Order 100 piles at 11 m 2 order 100 piles at 12 m 3 ·· 100 ·· 13 m 4 ·· 50 ·· 11 m & 50 at 12m 5 ·· 50 ·· 11 m & 50 at 13m 6 ·· 50 ·· 12 m & 50 at 13m

OUTCOMES:

|     | North | South |
|-----|-------|-------|
| 0=1 | ll m  | 12 m  |
| 2   | llm   | 13 m  |
| 3   | 12 m  | 12 m  |
| 4   | 12 m  | 13 m  |













· Answer i. Order 50 piles @ 11m and 50 piles @ 12m ii Expected loss = £920

· Results using both Table I and Table I

If table I and table I are equally probable, the problem can be formulated as follows



·Answer

## Expected loss is \$100

## PLANT EXTENSION PROBLEM

OUTCOME: 
$$d_1 = 10$$
  
 $d_1 = 11$   
Demand will be 12  $(d_3 = 12)$   
Demand will be 13  $(d_3 = 13)$   
Demand Will be 14  $(d_3 = 14)$ 

• Calculation of Probabilities  

$$P(d_3=j, d_i=i) = p(d_3=j/d_i=i) p(d_i=i)$$
  
 $(j=) 12 \quad 13 \quad 14$   
 $P(d_3=j/d_i=i) = (i=) 10 \begin{bmatrix} 0.8 & 0.2 & 0\\ 0.14 & 0.46 & 0.4 \end{bmatrix}$ 

$$P(d_{1} = i) \qquad i = 10 \quad \{0, 3\} \\ 11 \quad \{0, 7\} \\ (j=) \quad (2 - i) = 12 \quad (3 - i) \\ (j=) \quad (2 - i) = 10 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \\ (j=) \quad (2 - i) = 12 \quad (2 - i) \quad (2 - i) \quad (2 - i) = 12 \quad (2 - i) \quad (2 -$$

)

$$P(d_{3}=j) = P(d_{3}=j, d_{1}=10) + P(d_{3}=j, d_{1}=11)$$

$$j = 12 \quad 13 \quad 14 \quad 12 \quad 13 \quad 14$$

$$P(d_{3}=j) = \begin{cases} 0.24 & 0.06 & 0 \\ + & + & + \\ 0.098 & 0.322 & 0.28 \end{cases} = \begin{cases} 0.338 & 0.382 & 0.28 \\ 0.382 & 0.28 \\ 0.24 & 0.28 \\ 0.382 & 0.28 \\ 0.24 & 0.28 \\ 0.28 & 0.222 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28 \\ 0.28$$



· Estimation of Utilities Let U(4) = 1, U(-1) = 0 $U(0) = 0.5 \ U(4) + 0.5 \ U(-1) = 0.5 \ X1 + 0.5 \ X0 = 0.5$  $U(1) = 0.5 U(4) + 0.5 U(0) = 0.5 \times 1 + 0.5 \times 0.5 = 0.75$  $U(2) = 0.5 U(4) + 0.5 U(1) = 0.5 \times 1 + 0.5 \times 0.75 = 0.875$  $U(-ab) = 0.5U(0) + 0.5U(-1) = 0.5 \times 0.5 + a5 \times 0 = a25$ u 1.0 D Utility Curre: Piecewise /ire. 2.8. 0.6 @ Attitude to risk : 0.4 risk averse 0.2 4 profit (y) 3 2 0  $u = u_i - \frac{u_i - u_j}{y_i - y_i} (y_i - y) \quad \text{if } \quad y_j \leq y \leq y_i$  $U(1.2) = U(2) - \frac{U(2) - U(1)}{2 - 1} (2 - 1.2) = 0.875 - (0.875 - 0.75) \times 0.8 = 0.775$  $\mathcal{U}(0.3) = \mathcal{U}(1) - \frac{\mathcal{U}(1) - \mathcal{U}(0)}{1 - 0} (1 - 0.3) = 0.75 - (0.75 - 0.5) \times 0.7 = 0.575$  $U(1.8) = U(2) - \frac{U(2) - U(0)}{2 - 1} (2 - 1.8) = 0.875 - (0.875 - 0.75) \times 0.2 = 0.85$  $U(-0.5) = U(0) - \frac{U(0) - U(-0.6)}{0 - (-0.6)} (0 - (-0.5)) = 0.5 - \frac{0.5 - 0.25}{0.6} \times 0.5 = 0.292$  $u(2.5) = u(4) - \frac{u(4) - u(2)}{4 - 2} (4 - 2.5) = 1 - \frac{1}{2} (1 - 0.875) \times 1.5 = 0.906$  $U(0.5) = U(1) - \frac{u(1-u(0))}{1-2} (1-0.5) = 0.75 - (0.75 - 0.5) \times 0.5 = 0.625$  $\mathcal{U}(-0.2) = \mathcal{U}(0) - \frac{\mathcal{U}(0) - \mathcal{U}(-0.6)}{0 - (-0.6)} \left( 0 - (-0.2) \right) = 0.5 - \frac{0.5 - 0.25}{0.6} \times 0.2 = 0.417$  $\mathcal{U}(1.3) = \mathcal{U}(2) - \frac{\mathcal{U}(2) - \mathcal{U}(1)}{2 - 1} (2 - 1.3) = 0.875 - \frac{0.875 - 0.75}{1} \times 0.7 = 0.788$  $U(2.8) = U(4) - \frac{U(4) - U(2)}{4-2} (4-2.8) = 1 - \frac{1}{2} (1 - 0.875) \times 1.2 = 0.925$ 

